skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Napper, Lewis"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In the synthetic geometric setting introduced by Kunzinger and Sämann, we present an analogue of Toponogov’s Globalisation Theorem which applies to Lorentzian length spaces with lower (timelike) curvature bounds. Our approach utilises a “cat’s cradle” construction akin to that which appears in several proofs in the metric setting. On the road to our main result, we also provide a lemma regarding the subdivision of triangles in spaces with a local lower curvature bound and a synthetic Lorentzian version of the Lebesgue Number Lemma. Several properties of time functions and the null distance on globally hyperbolic Lorentzian length spaces are also highlighted. We conclude by presenting several applications of our results, including versions of the Bonnet–Myers Theorem and the Splitting Theorem for Lorentzian length spaces with local lower curvature bounds, as well as discussion of stability of curvature bounds under Gromov–Hausdorff convergence. 
    more » « less